Acta Crystallographica Section E

Structure Reports

Online

\{ μ-1,1'-[2-Cyano-2-(2-pyridyl)propane-1,3-diyl]-di- η^{5}-cyclopentadienyl\}bis[tricarbonylmanganese(II)]

ISSN 1600-5368

Charles B. Duke III, ${ }^{\text {a }}$ Tung T. To, ${ }^{\text {a }}$
Charles R. Ross II ${ }^{\text {b }}$ and Theodore J. Burkey ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, University of Memphis, 213 Smith Chemistry Building, Memphis, TN 38152-3550, USA, and ${ }^{\mathbf{b}}$ St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105-2794, USA

Correspondence e-mail: tburkey@memphis.edu

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.026$
$w R$ factor $=0.070$
Data-to-parameter ratio $=13.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The dinuclear title compound, $\left[\mathrm{Mn}_{2}\left(\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2}\right)(\mathrm{CO})_{6}\right]$, was isolated en route to other photochromic organometallic targets. The structure features two bridged half-sandwich cyclopentadienylmanganese centers.

Comment

The synthesis of photochromic organometallic systems has led us to a variety of functionalized arene-metal-carbonyl complexes and several unexpected side-products. In the present work, a condensation of the anion of 2-pyridineacetonitrile with cymantrene methyl chloride, $\left[\mathrm{Mn}\left(\eta^{5}-\right.\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Cl}\right)(\mathrm{CO})_{3}$], led to the title compound, (I), an unexpected dinuclear complex (To et al., 2007).

(I)

In the structure of (I), atoms Mn 1 and Mn 2 are 1.770 (1) and 1.769 (1) A from the respective least-squares planes of their arene rings. The average distances from the metal atoms to the ring C atoms are 2.143 (4) and 2.141 (4) \AA for Mn1 and Mn 2 , respectively. Individual $\mathrm{Mn}-\mathrm{C}$ distances are in the ranges $2.140(2)-2.146(2) \AA$ for Mn 1 and $2.138(2)-$ 2.144 (2) \AA for Mn2, indicating no significant distortion of the Mn -arene bonds. The average $\mathrm{Mn}-\mathrm{CO}$ distances are

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the labeling scheme used.
1.802 (3) and 1.798 (3) \AA for Mn1 and Mn2, respectively. The nearly 90° angles between adjacent CO ligands show that the geometries about the metal centers are pseudooctahedral.

Experimental

Thorough experimental details for the synthesis of (I) and its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra will be submitted elsewhere (To et al., 2007). Diffraction-quality crystals were obtained from evaporation of an ethyl acetate-hexanes (1:4) solution.

Crystal data

$\left[\mathrm{Mn}_{2}\left(\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2}\right)(\mathrm{CO})_{6}\right]$	$V=2295.0(1) \AA^{3}$
$M_{r}=550.28$	$Z=4$
Monoclinic, $P 2_{1} / c$	$\mathrm{CuK} \mathrm{\alpha}$ radiation
$a=12.3281(3) \AA$	$\mu=9.35 \mathrm{~mm}^{-1}$
$b=14.9809(4) \AA$	$T=173(2) \mathrm{K}$
$c=12.7137(3) \AA$	$0.19 \times 0.12 \times 0.05 \mathrm{~mm}$
$\beta=102.202(1)^{\circ}$	

$\beta=102.202(1)^{\circ}$

Data collection

Bruker X8 PROTEUM CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.259, T_{\text {max }}=0.626$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$	316 parameters
$w R\left(F^{2}\right)=0.070$	H-atom parameters constrained
$S=1.05$	$\Delta \rho_{\max }=0.38 \mathrm{e}^{-3}$
4204 reflections	$\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$

All H atoms were treated using an isotropic idealized riding model, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-0.99 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: PROTEUM2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SADABS (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997), Mercury (Version 1.4.2, Build 2; Macrae et al., 2006) and RASTER3D (Merritt \& Bacon, 1997); software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999) and publCIF (Westrip, 2007).

The authors acknowledge support provided by the National Institute of Standards and Technology (grant No. 70NANB4H1093) and the National Science Foundation (grant No. CHE-0227475 to TJB, CBD, TTT). Support of this research by the Cancer Center Support CORE Grant (No. P30 CA-21765) and the American Lebanese Syrian Associated Charities (ALSAC) is gratefully acknowledged by CRR.

References

Bruker (2000). SADABS. Version 2.03. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). SAINT (Version 7.12a) and PROTEUM2 (Version 1.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Merritt, E. A. \& Bacon, D. J. (1997). Methods in Enzymology, Vol. 277, Macromolecular Crystallography, Part B, edited by C. W. Carter Jr \& R. M. Sweet, pp. 505-524. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
To, T. T., Duke, C. B. III, Junker, C. S., O’Brien, C. M., Ross, C. R. II, Barnes, C. E., Webster, C. E. \& Burkey, T. J. (2007). Organometallics. In preparation. Westrip, S. P. (2007). publCIF. In preparation.

[^0]: (C) 2007 International Union of Crystallography All rights reserved

